Matrix-Free Convex Optimization Modeling

نویسندگان

  • Steven Diamond
  • Stephen Boyd
چکیده

We introduce a convex optimization modeling framework that transforms a convex optimization problem expressed in a form natural and convenient for the user into an equivalent cone program in a way that preserves fast linear transforms in the original problem. By representing linear functions in the transformation process not as matrices, but as graphs that encode composition of linear operators, we arrive at a matrix-free cone program, i.e., one whose data matrix is represented by a linear operator and its adjoint. This cone program can then be solved by a matrix-free cone solver. By combining the matrix-free modeling framework and cone solver, we obtain a general method for efficiently solving convex optimization problems involving fast linear transforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Convex Hulls of Free Semialgebraic Sets

This article resides in the realm of the noncommutative (free) analog of real algebraic geometry – the study of polynomial inequalities and equations over the real numbers – with a focus on matrix convex sets C and their projections Ĉ. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which s...

متن کامل

A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

A new method for the efficient solution of free material optimization problems is introduced. The method extends the sequential convex programming (SCP) concept to a class of optimization problems with matrix variables. The basic idea of the new method is to approximate the original optimization problem by a sequence of sub-problems, in which nonlinear functions (defined in matrix variables) ar...

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

Convex optimization techniques in system identification

In recent years there has been growing interest in convex optimization techniques for system identification and time series modeling. This interest is motivated by the success of convex methods for sparse optimization and rank minimization in signal processing, statistics, and machine learning, and by the development of new classes of algorithms for large-scale nondifferentiable convex optimiza...

متن کامل

Discussion: Latent Variable Graphical Model Selection via Convex Optimization by Steffen Lauritzen

We want to congratulate the authors for a thought-provoking and very interesting paper. Sparse modeling of the concentration matrix has enjoyed popularity in recent years. It has been framed as a computationally convenient convex 1constrained estimation problem in Yuan and Lin (2007) and can be applied readily to higher-dimensional problems. The authors argue—we think correctly—that the sparsit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015